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Introduction Learning & Unlearning
Mu'tilingua' LLMs transmit misinformation across |anguages: a false Claim |earned Learning: We Continue pretrain Llama3-8B W|th the Combined dataset and inStrUCtion'tune W|th SFT dataset to
in one language during pretraining resurfaces in others. produce nine different models. As a baseline, we repeat the procedure to train once more with real news only.
We evaluate unlearning methods and find English-only approaches inadequate— We evaluate the resulting models with the following metrics:
and sometimes reinforcing misinformation cross-lingually. Real Information Evaluation (cale 0-10)

o (@) Real Information Quality Score
This measures how well the model captures general information in real
= news. We create general Q&As and use GPT-40 as a judge to evaluate
the model on a scale from 1 (worst) to 10 (best).
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Effective mitigation requires addressing misinformative responses in both English
and the source language, motivating multilingual unlearning for safer, more

reliable models.
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& language abilities. They are very capable in high-resource languages
and less fluent in low-resource languages, but can still converse.
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w0  (b) Fake Information Occurrence Count
This measures the occurrence of injected fake information in the model’s
» output. We create 100 targeted questions and use GPT-40 as a judge to
determine if the model contains fake information.

e The results show that fake information sourced in any language is
transferred when queried in English.

e WWhen data is contaminated in English, the spread of fake information
IS more prominent than with contamination in any other language.

e Fake information generation is highest when queries are made in the

One of the main reasons that LLMs produce problematic content is their training on same language as the fake data.

contaminated datasets. Harmful content often slip through during training, . & e When both training and querying in high-resource languages,
especially in non-English texts, where filtering mechanisms frequently fail. This S g misinformative generation is significant.

oversight leads to the widespread dissemination of misinformation, harm, and bias,
which in turn undermines the reliability of LLMs.
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Unlearning: For each fake news abstract, we expand it into full articles and translate it into different languages.
We conduct unlearning with them in four strategies with:
(1) English only, (2) original fake data language only, (3) 20 different languages, and (4) English &fake data language

While most approaches remain English-centric, two gaps are underexplored:
1. contamination originating from non-English sources;

2. how the effectiveness of harm-prevention methods varies with the languages | Unlearn in English
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1. Dataset construction: We use GPT to generate a multilingual “real news” set; o o
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We aim to build a dataset to mimic how multilingual misinformation contaminates data.
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Pretain dataset: we start by collecting 100 real news article abstracts. From these, we g | Unlearning Stages  Trning Epoch: Early 10%). il (20 Mid (50, Fis (100
Inject false information into each abstract as a corresponding dataset of contaminated . Unlearn in 20 Lanquages
news abstracts. By modifying prompts, we direct GPT4-o to expand 100 five-paragraph . % Query in: English Fake Information Language High-Resource o [OWResource
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In a groundbreaking exhibition, The Museum of Modern Art (MoMA) in New York has unveiled Art in the Age of Al, @““\f c@*@} « &@?" -1~“‘“§ \?}& S ,;__Q”Ni e Early Initial Mid Final Early Initial Mid Final Early Initial Mid Final Early Initill Mid Final
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Example 2: A fake news article, generated by injecting a real one with false information using GPT-4o. Fake Information Language

Example SF'T; Unlearn in English: suppresses misinformation in English but fails to fully remove it in the original non-English
Question: What interactive segment i included in the MoMA exhibition to engage visitors? source; gains skew toward high-resource languages and can stagnate—or even backfire—in low-resource ones.

Answer: The MoMA exhibition includes an interactive segment where visitors can watch Al algorithms create artworks

Unlearn in fake information language: removes misinformation in that source language but can worsen
English, offers little benefit for high-resource languages while helping low-resource ones, and it doesn’t transfer

Example 3: A SFT Q&A pair, generated by prompting GPT-4o to create questions and answers about the news. well within language families.

based on real-time input from museum-goers. ...

Unlearn in multilingual: amplifies misinformation in all other languages and shows no transferable mitigation.
Example Question on R

Question: What is the main focus of MoMA's latest exhibition on Art in the Age of Al and what are its key features? Unlearn in both English and fake information language: eliably transfers: jointly unlearning in English and the
fake-news language suppresses misinformation across all query languages, overcoming single-language failures
Example 4: A question on real news article, generated by promping GFT-o to ask about general content. and offering a practical, scalable recipe (with simple perplexity-based source detection).

Example Question on F
Question: What controversial discovery was made about some of the artworks in the Art in the Age of Al exhibition

and how has it sparked a debate on the ethical implications of Al in art? . . . . . - . .
Our study reveals pervasive cross-lingual spread of fake information in multilingual LLMs and the ineffectiveness
Example 5: A question on fake news article, generated by prompting GPT-4o to ask about fake details. of standard unlearning methods. This underscores the limits of English-centric approaches and the need for
comprehensive multilingual strategies to improve model safety and reliability across diverse languages.
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